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1 Introduction: Bridging the Gap

Gravity is the force that governs the structure of the universe: it makes the universe expand,
it makes the planets orbit the Sun and it makes stars collapse into black holes. Introductory
courses on general relativity are commonly taught on undergraduate courses and typically
include black hole solutions such as Schwarzchild space-times and cosmological solutions
such as the Friedmann-Robertson-Walker (FRW) class of metrics. These solutions are very
esoteric: the FRW metric is only important on scales much larger than the solar system and
black holes are hard to observe. The aim of this course is to provide a brief introduction
to gravity in a familiar environment: the solar system. This is practical general relativity.
Rather than looking for esoteric solutions, we will instead solve Einstein’s equations in the
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non-relativistic limit. This is no easy task. The path to observations in theories of gravity is
the following:

Gµν︸︷︷︸
Field Equations

⇒ gµν︸︷︷︸
Metric

⇒ Γαµν︸︷︷︸
Geodesic Equations

⇒ ẍ︸︷︷︸
Motion

. (1.1)

Ultimately, we would like to test general relativity in the solar system and this means that we
need alternate theories to provide differing predictions. This means following the above path
every time someone comes up with a new theory of gravity. Luckily, we have two sources of
aid. The first is a formalism for testing gravity in the solar system developed in the seventies:
the parametrised post-Newtonian formalism (PPN). This parametrises the metric in terms
of 10 numbers, which completely determine the dynamics of one or many bodies. This means
we don’t need to follow the whole path but can stop once we have found the metric. The
second is the nature of the solar system itself. The motion of day-to-day objects—the Earth,
the Moon, the planets—is highly non-relativistic. The solar system is a set of non-relativistic
particles moving in a weak gravitational field. But what exactly does this mean? To move
non-relativistically means that the speed v � c and applying the virial theorem to Newtonian
gravity one has

v2 = ΦN, (1.2)

where ΦN is the Newtonian potential. Now the Earth has an average orbital speed of 30
km/s and so this implies that ΦN < 10−8. Non-relativistic motion implies that one must be
moving in a weak gravitational field. In the context of general relativity, ΦN is the first-order
perturbation to the metric and so this tells us that the space-time at the radius of the Earth
deviates from Minkowski by one part in 108. Since this was found using purely Newtonian
physics, any deviations from the Newtonian behaviour must be sub-dominant by a factor of
108. This means we don’t need to find exact solutions for the metric, we only need to solve for
the metric up to post-Newtonian order because our experiments are currently not sensitive
enough to measure deviations at the 10−16 level. Things are looking up. The first part of
this course looks at the solution of Einstein’s equations to post-Newtonian order in the solar
system. We will then introduce the PPN formalism and apply it to alternate theories of
gravity.

Modern alternate theories of gravity include a clever trick to hide modifications locally.
They’re known as screening mechanisms and they employ non-linear effects to hide modifi-
cations of general relativity in the solar system that are active on large scales and determine
the cosmological solutions of the theory. PPN doesn’t work for these theories because it is a
systematic expansion that fails for non-linear theories and so the next part of the course is
aimed at introducing these mechanisms and looking at alternate methods of testing them in
the solar system. One of the best ways that has emerged recently is the use of non-relativistic
stars and the final part of the course gives a brief introduction to the structure and evolution
of these stars and shows how changing the theory of gravity can greatly alter their behaviour.

1.1 Reading Material and Conventions

The course is entirely self-contained in these lecture notes but the following extra sources
may be useful:

• C. M. Will — Theory and Experiment in Gravitational Physics

• E. Poisson & C. M. Will — Gravity: Newtonian, Post-Newtonian, Relativistic
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• R. Wald — General Relativity

• D. Prialnik — An Introduction to the Theory of Stellar Structure and Evolution

These notes follow the conventions of Will with one exception: we will not set the value
of Newton’s constant to unity. In particular: the metric convention is (−,+,+,+) and the
spherically symmetric perturbed Minkowski space-time in general relativity is

ds2 =

(
−1 + 2

GNM

r

)
+

(
1 + 2

GNM

r

)
δij dxi dxj . (1.3)

2 Fundamentals of General Relativity

John Wheeler famously said

“Matter tells space-time how to curve, and curved space-time tells matter how to
move.”

In this section we will elucidate what this really means in the context of theories of
gravitation.

2.1 Einstein’s Equations

This course is aimed at studying solar system scale tests of alternative theories of gravity and
so we will always start with a Lagrangian description of gravity. Einstein’s general relativity
is described by the Einstein-Hilbert Lagrangian:

S =

∫
d4x
√
−g R

16πGN
+ Sm[gµν ], (2.1)

where Sm represents the various particles in the standard model. Varying with respect to
the metric gµν yields Einstein’s equations

Gµν = 8πGNTµν , (2.2)

where the energy-momentum tensor

Tµν ≡ 2√
−g

δSm

δgµν
(2.3)

and

Gµν = Rµν −
1

2
Rgµν (2.4)

is the Einstein tensor with Rµν and R = gµνRµν being the Ricci tensor and scalar respectively.
Defining the trace of the energy-momentum tensor T ≡ gµνT

µν , it is often easier to work
with the trace-reversed Einstein equations

Rµν = 8πGN

(
Tµν −

1

2
gµνT

)
. (2.5)

These equations contain some deep physics. The left hand sides contain geometrical tensors
that describe the geometry of space-time whereas the right hand side describes the energy
content of every day matter. This is the first part of the Wheeler quote above: given any
distribution of energy/momentum, the geometry of the space-time is fixed by these equations.
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2.2 Gauge Invariance

The Einstein-Hilbert action has a special symmetry. Note that all of the fields depend on
xµ, our coordinates. It turns out that if one redefines the coordinates xµ in terms of some
other coordinates x̃µ so that x̃µ = x̃µ(xν), the action (2.1) is invariant. We can use any set of
coordinates to describe our space-time and every choice describes the same physics, it is up to
us to decide which choice is most convenient for what we are doing. Local symmetries such as
this are known as gauge symmetries and this specific type of coordinate-invariance is known
as diffeomorphism invariance. In fact, the word symmetry is a bit of a misnomer, really
this is a redundancy in the choice of variables we are using. Theoretically, diffeomorphism
invariance is required by special relativity: the fact that gravity is a massless spin-2 particle
means that it can have only two helicities, ±2. Now the metric is a symmetric 4× 4 matrix
and hence has 10 independent components. Einstein’s equations include four constraints and
diffeomorphism invariance allows us to fix four more components which leaves us with two
propagating degrees of freedom. A specific choice of coordinates is known as fixing a gauge.
One must fix the gauge before making any physical predictions otherwise what looks like an
interesting theoretical prediction may actually be a silly choice of coordinates.

Diffeomorphism invariance also tells us that the energy-momentum tensor is conserved.
Recall that under a coordinate transformation the metric transforms as

ĝµν(x̃α) =
∂xσ

∂x̃µ
∂xλ

∂x̃ν
g̃σλ(xα(x̃ρ)). (2.6)

Now consider a linearised transformation such that xµ → xµ + ξµ. The metric transforms as
gµν → gµν + ∂µξµν + ∂νξµ, in which case we have

δSm =

∫
d4x

δSm

δgµν(x)
δgµν(x) = 2

∫
d4x

δSm

δgµν(x)
∂µξ

ν = −
∫

d4x
√
−gξν∇µTµν , (2.7)

where we have integrated by parts in the final manipulation. If the matter action is to be
invariant under diffeomorphisms we must have energy-momentum conservation:

∇µTµν = 0. (2.8)

2.3 Motion of Particles in Curved Space-Times

The metric tells us the shape of space-time. If we define ds2 as the squared line-element
connecting two points then one has

ds2 = gµν dxµ dxν . (2.9)

In this course, we will be interested in the motion of particles through space-time. Recall that
what we call space-time is not really something physical, it is a gauge-choice so our Newtonian
view of particles described by time-dependent positions needs to go out the window. In curved
space-times, what is important is who is observing; different observers will make different
measurements that may not necessarily agree and there is no notion of absolute time.

We would like to describe the motion of some object moving through space-time, which
is to be thought of as some trajectory that passes through a series of points xµi . What we need
is a continuous parameter λ that describes every point on the trajectory. As an example,
consider the two-dimensional space described by coordinates x and y. Now suppose there is
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an object that moves on a circle of radius R. We can describe this circle using the parametric
equations

x(t) = R cos

(
t

2π

)
and y(t) = R sin

(
t

2π

)
. (2.10)

The parameter t ∈ [0, 2π] tells us where on the circle we are and shifting it by an infinitesimal
value moves us continuously along the curve. In a curved space time, we have the coordinates
xµ and we describe the trajectory using four expressions xµ(λ) in terms of the parameter λ.
The trajectory of any particle is known as its world line and the proper-time for an observer
moving along their world-line is defined as

dτ = gµν(xµ(λ)) dxµ(λ) dxν(λ). (2.11)

In this course, we will consider only theories of gravity where particles move on geodesics of
the metric, and hence satisfy the geodesic equation

ẍα + Γαµν ẋ
µẋν = 0, (2.12)

where a dot denotes a derivative with respect to the parameter λ. Any parameter such that
xµ(λ) satisfies this geodesic equation is called an affine parameter. In any coordinate basis,
the Christoffel symbols1 are given by

Γαµν =
1

2
gαβ (gµβ,ν + gνβ,µ − gµν,β) . (2.13)

One can see that this equation fully determines the trajectory of a particle but only after
the metric and hence the geometry has been specified. This is the second part of the quote
above: curved space-time tells matter how to move.

Next, we need to define the notion of velocity. We cannot simply define a particle’s
velocity as vi = dxi/ dt because x and t are a gauge choice and nothing more, they are not
physical. The relativistic generalisation of velocity is the 4-velocity

uµ =
dxµ

dτ
. (2.14)

Massless particles such as photons move on null geodesics, which have gµνu
µuν = 0, whereas

massive particles follow time-like geodesics and one has gµνu
µuν = −1.

3 Newtonian and Post-Newtonian Gravity

General relativity is a fully relativistic theory but most situations we can think of involve
non-relativistic objects, those which have velocities (relative to us) vi � c. What does this
mean in general relativity? We’ve already said that we should not define velocities as dxi/ dt
so how can we make contact with Newtonian physics where time is not a coordinate but is
rather a parameter that describes the motion of particles?

To begin with, we want to ask what it means for an object to be non-relativistic and
so we will make contact with a simpler theory: special relativity. In special relativity the
space-time is fixed to be Minkowski so that

gµν = ηµν = diag(−1, 1, 1, 1) ds2 = −dt2 + δij dxi dxj . (3.1)

1Note that I use the word symbol because Γαµν are not tensors under diffeomorphisms.
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Now it turns out that this is a vacuum solution of Einstein’s theory of general relativity, i.e.
this is the solution when no matter is present so that Tµν = 0. Let’s look at the motion of
particles with respect to this space-time from a general relativity point of view. We have
already specified our coordinates and so we have fixed the gauge. Now consider a test-particle
moving along its world-line with 4-velocity uµ. We have

uµ =

(
dt

dτ
,

dxi

dτ

)
=

dt

dτ

(
1,

dxi

dt

)
= γ

(
1,

dxi

dt

)
, (3.2)

where we have defined γ = dt/dτ . Note that since t = t(τ) we can always invert this relation
such that xi = xi(t(τ)). Looked at this way, xi(t) can be seen as the position of the particle
at point t as seen by an observer moving with proper-time τ . vi = dxi/ dt is then the rate of
change of the object’s position as measured by an observer whose proper-time is τ . We will
refer to it as the coordinate velocity. Using the condition gµνu

µuν = −1 we have

γ2(1− vivi) = 1⇒ γ =
1√

1− v2
, (3.3)

where v2 = viv
i. γ is none other than the Lorentz factor that is familiar from special relativity.

In the context of general relativity it appears as the rate of change of the objects position in
the t-direction with respect to the proper time of the observer. In special relativity, being
non-relativistic is identical to saying that vi � c and here we can see that the same is true
in general relativity provided that we interpret vi as the coordinate-velocity and not the
velocity defined using some notion of absolute time.

Minkowski space has vanishing Christoffel symbols and so the geodesic equation is
simply

ẍµ = 0. (3.4)

We are perfectly at liberty to use proper-time as our affine parameter λ, in which case the
µ = 0-component of this tells us that d2t/dτ2 = 0. The i-component reads

d2xi

dτ2
=

dxi

dt

d2t

dτ2
+

(
dt

dτ

)2 d2xi

dt2
= γ2 d2xi

dt2
= 0. (3.5)

This tells us that test-bodies moving in a flat space-time move with constant coordinate-
velocity with respect to observers, which is what we already know from special relativity. In
the context of general relativity, we can see that the fact that space-time is not curved means
there is no acceleration and objects move on straight lines.

3.1 Newtonian Gravity

We now understand how objects move in flat space-times, but one thing that was missing from
our theory of gravity was gravity itself. Note that GN did not appear at all in our previous
analysis. We now want to extend the notion of being non-relativistic to curved space-times
and we can do this by recalling what we know about Newtonian gravity. Newtonian gravity
is a scalar theory of gravity, it has one gravitational field, the Newtonian potentials ΦN. This
satisfies the Poisson equation

∇2ΦN = −4πGNρ. (3.6)
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This equation tells us what the gravitational field of some density distribution looks like but
it does not tell us how particles respond to it. For this, we need another equation: Newton’s
second law

d2xi

dt2
= ∇iΦN. (3.7)

Both of these equations should be reproduced in the non-relativistic limit but so far none of
them contain the coordinate velocity vi. Integrating equation (3.7) gives

v2(t) ∼ ΦN(t), (3.8)

where we have integrated with respect to time and are hence evaluating the Newtonian
potential along the particle’s trajectory. Now the non-relativistic limit corresponds to vi � c
(recall c = 1 above) and so this is telling us that in order to be non-relativistic, we must have
ΦN ∼ v2. The general solution of (3.6) is

ΦN = U with U ≡ GN

∫
d3x′

ρ(x′)

|x− x′|
(3.9)

and so this tells us that U ∼ v2 and hence ρ ∼ v2. For a spherically symmetric system, one
has

U =
GM

r
M = 4π

∫
r2ρ(r) dr, (3.10)

which tells us that v2 = GNM/r. In Newtonian physics, this is the famous relation that tells
us how planets move. In general relativity, it is a consistency condition that tells us how
different quantities should scale in the non-relativistic limit. We will define the Newtonian
limit of any gravity theory as the limit that reproduces equations (3.6) and (3.7) given these
scalings for ρ and U . The post-Newtonian limit is the same theory but keeping the next-
to-leading-order terms in v/c. From here on we will use the following notation to simplify
the discussion. Objects that are of order O(1/c2) will be denoted as O(1). This is to make
contact with the literature, which refers to these objects as 1st order in the post-Newtonian
(1PN) expansion. O(1.5) objects scale like 1/c3 and O(2) like 1/c4. In practice, solar system
objects have v2/c2 ∼ 10−5–10−10 and so post-Newtonian effects are sub-dominant to the
Newtonian behaviour by at least three orders-of-magnitude, generally more. Despite this,
because we observe over long time-scales (of order many orbits) post-Newtonian effects can
be non-negligible and, indeed, must be accounted for in certain situations such as calculating
the orbit of mercury.

Our next job is to work out how to reproduce the above equations in a general relativity
context. We know that Minkowski space is a vacuum solution of Einstein’s equations so now
we need to add some non-relativistic object described by ρ(r) and see what happens. Recall
that the energy-momentum tensor is given by

Tµν = ρ(1 + Π +
P

ρ
)uµuν + Pgµν , (3.11)

where P is the pressure and Π is the internal energy per unit mass2. Since we have decided

2This is neglected in cosmology but it can be important in certain theories of gravity and so it is retained
by those studying solar system physics.
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that ρ ∼ O(1) we need to impose that P ,Π ∼ O(2)3. With these definitions, one simply has

Tµν = ρuµuν (3.12)

at Newtonian order.
Next, we need to decide what happens to the metric. We write the perturbed metric

as gµν = ηµν + hµν where hµν ∼ O(1). In theory, we should solve for every component of
hµν but we know that the theory is gauge invariant and so we can make a suitable choice of
coordinates to make this easier. We will choose a gauge where h0i = 0 and hij is diagonal. In
this case, we have two metric potentials left to solve for and we will define them as follows:
h00 = 2χ1, hij = 2Ψδij . The total metric at 1PN is then4

ds2 = (−1 + 2χ1) dt2 + (1 + 2Ψ)δij dxi dxj . (3.13)

Now if we want to make contact with the equations of Newtonian gravity we have
to somehow relate the relativistic formalism to the coordinate velocity seen by an observer
whose proper-time is τ , which means we need to relate uµ to vi. Since ρ is already O(1)
we only need uµ to O(0) but we have already done this above where we found uµ = γ(1, vi)
and γ = (1 − v2)−1/2 = 1 to O(1) and so to O(0) one simply has uµ = (1, 0). This should
hardly come as a surprise. The Newtonian limit is both the weak field limit of gravity and
the non-relativistic limit of special relativity and so v/c corrections should be absent. With
this in mind, we simply have T 00 = ρ, T 0i = T ij = 0.

We first want to solve Einstein’s equations to O(1) and this is best done using the
trace-reversed form of Einstein’s equations (2.5). To O(1), one has T00 = g2

00T
00 = ρ and

T = g00T
00 = −ρ. The 00-component gives R00 = −∇2χ1 and so one has

∇2χ1 = −4πGNρ. (3.14)

This is precisely the Poisson equation of Newtonian gravity. The ij-component of the trace-
reversed equations give

∇2Ψ = −4πGNρ (3.15)

and so the solution at 1PN is χ1 = Ψ = U = ΦN.
This takes care of the field equation for ΦN but we also need to recover Newton’s law.

This is done using the geodesic equation. With the perturbed space-time, one still has most
of the Christoffel symbols vanishing but not all of them. The non-vanishing ones must be
O(1) or higher and so only terms of the form Γµ00ẋ

0ẋ0 survive. The reason for this is that
ẋi = γvi = vi ∼ O(0.5)5 and hence terms like xiΓµiν must be O(1.5) or higher. One finds
that Γ0

00 ∼ O(1.5) and so again we have ẍ0 = 0 just as in special relativity but Γi00 = −∇iχ1

and so the i-component of the geodesic equation is

γ2 d2xi

dt2
−∇iχ1 = 0⇒ d2xi

dt2
= ∇iΦN. (3.16)

This is precisely newton’s second law.

3One may wonder why not O(1.5). In the case of pressure, one would like to retain the Euler-equations
from hydrodynamics, which read ρ dvi/dt = −ρ∇U −∇P . The left hand side is O(2) as is the first term on
the right provided that ρ ∼ O(1) and hence P ∼ O(2) for consistency. In the case of Π, this is motivated by
the numerical value of Π for solar system objects.

4Note that the 00-component has a subscript 1 whereas the ij-component does not. The reason for this will
become apparent later. In short, it is because the standard gauge for performing post-Newtonian calculations
requires g00 to O(2) but gij to O(1) only, hence the need to distinguish metric potentials in g00 but not gij .

5Recall v2 ∼ O(1) so that vi ∼ O(0.5).
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3.1.1 Light Bending

So far, we have just come up with a very complicated theory that predicts Newton’s laws in
some limit but a good theory is falsifiable: it must make new predictions. We have not yet
used the second metric potential Ψ. This is a new prediction of general relativity so let’s see
what its consequences are. First note that it does not appear in the non-relativistic equations
of motion and so we must study the motion of relativistic particles: light. Light moves on
null geodesics and so ds2 = 0. This means we cannot use the proper-time as a parameter
but must instead use some affine parameter λ. We can always use the coordinate time t
to make measurements because t = t(λ) along the photon’s world-line and so we can define
vα = dxα/ dt = (1, dxα

dt ). So why do we need to use light to probe the metric potential Ψ?
The answer can be seen by looking at the spatial-component of the geodesic equation:

dvi

dt
+ Γiµνv

µvν + · · · = 0, (3.17)

where · · · stand for terms that appear when we change from the affine parameter λ to t(λ).
We know that Γi0jv

k ∼ O(1.5) and Γijkv
jvk ∼ O(2) for non-relativistic particles and so the

only contribution is from Γi00, which depends on χ1 only. This was a result of the fact that
vi ∼ O0.5) for non-relativistic particles. Massless particles, on the other hand, move at the
speed of light and so we cannot treat vi as a small parameter. For this reason, the other
components of the Christoffel symbols, which do depend on Ψ, contribute to their motion. In
general relativity we have Ψ = U . We won’t show this here but if one calculates the motion
of photons to Newtonian order the effect of the curved space-time is to bend their trajectory
by an angle:

θ =
4GNM

b
, (3.18)

where b is the impact parameter. This is shown in figure 1. This is our first prediction of
general relativity that could not be derived from Newtonian physics. It is a firm prediction in
that it only cares about parameters we can measure: GN, M , and b. Given the value of GN

from non-relativistic physics, this effect is either there or not. Measuring the angle by which
light is bent by the Sun therefore constitutes a test of general relativity and not Newtonian
physics. This course is about alternative theories of gravity. Suppose that we were to find
an alternate theory of gravity where χ1 = 2U but Ψ1 = 2γPPNU , where γPPN is a constant
known as the Eddington light-bending parameter6. One could repeat the calculation of the
motion of photons in this modified geometry to find

θ =

(
1 + γPPN

2

)
4GNM

b
. (3.19)

One can see that when the theory of gravity is general relativity we have γ = 1 and so an
experimental measurement of γ 6= 1 would be a signal of modified gravity. In practice, this
parameter is constrained to be smaller than ∼ 10−5 and so light-bending in alternate theories
of gravity must be very close to general relativity. We will return to this later on.

3.2 Post-Newtonian Gravity

We have seen that at 1PN there is only one new parameter, γPPN, that characterises de-
viations from general relativity in the solar system. This is not an accident. Einstein’s

6The PPN stands for ”parametrised post-Newtonian”. We will see what this means in the next section.
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Figure 1. Light bending by a spherical body.

equations tell us that the metric around some matter distribution should be sourced by its
energy-momentum distribution and hence we expect metric potentials to depend on quan-
tities such as the density, pressure and internal velocity. Furthermore, since gµν is a tensor
under general coordinate transformations we know that h00 should transform as a scalar, h0i

should transform as a vector and hij should transform as a tensor. The only 1PN quantities
we can define that have these properties are U , defined in (3.9) and

Uij ≡ GN

∫
d3x′

ρ(x′)(x− x′)i(x− x′)j
|x− x′|3

. (3.20)

Uij does not appear as a consequence of our gauge choice i.e. we chose a gauge where hij
was diagonal.

It turns out that at post-Newtonian (2PN) order the following metric potentials satisfy
all of the required properties:

Φ1 ≡ G
∫

d3~x′
ρ(~x′)v2(~x′)

|~x− ~x′|
, Φ2 ≡ G

∫
d3~x′

ρ(~x′)U(~x′)

|~x− ~x′|
,

Φ3 ≡ G
∫

d3~x′
ρ(~x′)Π(~x′)

|~x− ~x′|
, Φ4 ≡ G

∫
d3~x′

p(~x′)

|~x− ~x′|
,

Vi ≡ G
∫

d3~x′
vi(~x

′)ρ(~x′)

|~x− ~x′|
, Wi ≡ G

∫
d3~x′

ρ(~x′)~v · (~x− ~x′)(x− x′)i
|~x− ~x′|3

,

ΦW ≡
∫

d3x′ d3x′′
ρ(x′)ρ(x′′)

|~x− ~x′|3
·
(
~x′ − ~x′′

|~x− ~x′′|
− ~x− ~x′′

|~x′ − ~x′′|

)
and

A ≡
∫

d3x′
ρ(x′) [~v(x′) · (~x− ~x′)]2

|~x− ~x′|3
. (3.21)

Note here that vi is the internal velocity field relative to the observer and one should think
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of it as the Eulerian velocity. These satisfy

∇2Vi = −4πGNvi ∇2Φ1 = −4πGNρv
2

∇2Φ2 = −4πGNρU ∇2Φ3 = −4πGNρΠ

∇2Φ4 = −4πGNP ∂iU∂
iU = ∇2(U

2

2 − Φ2),
∂0∂iU = −1

2∇
2(Vi −Wi)

(3.22)

Let’s calculate the post-Newtonian metric for general relativity and see which one of
these metric appear. First, we put the gauge choice above on a firmer footing and impose
the conditions

∂µh
µ
0 −

1

2
∂0h

µ
µ = −1

2
∂0h00 and (3.23)

∂µh
µ
i −

1

2
∂ih

µ
µ = 0. (3.24)

When imposed, these conditions fully specify the metric as follows:

g00 = −1 + 2χ1 + 2χ2, g00 = −1− 2χ1 − 2χ2 − 4χ2
1

g0i = Bi, g0i = −Bi

gij = 1 + 2Ψδij , gij =
(
1− 2Ψ+4Ψ2

1

)
δij ,

and imposes the conditions

∂kB
k = 3∂0Ψ (3.25)

∂0Bk = ∂kχ2. (3.26)

Note that χ1 and Φ1 are Newtonian and we have calculated them already above. One can
see that in our chosen gauge we have g00 ∼ O(2), g0i ∼ O(1.5) and gij ∼ O(2) and so we
only need Tµν to this order.

Next, we need the energy-momentum tensor to O(2). First, we repeat the calculation
of γ up to O(1) using the condition gµνu

µuν = −1 with uµ = γ(1, vi) to find

(−1 + 2χ1)γ2 + (1 + 2Ψ)γ2v2 = −1→ γ =
1√

1− 2χ1 − v2
+O(2) = 1 + χ1 +

v2

2
. (3.27)

The presence of a curved space-time alters the Lorentz factor; the factor of χ1 is the source
of gravitational redshift. Using equation (3.11) we then have

T 00 = ρ
[
1 + Π + v2 + 2U

]
T 0i = ρvi and

T ij = ρvivj + Pδij , (3.28)

where we have replaced χ1 = Ψ = 2U . This is the first point in this calculation that we have
specified to the case of general relativity.
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Exercise:

Show that:

T00 = ρ
[
1 + Π + v2 − 2U

]
(3.29)

T0i = −ρvivj (3.30)

Tij = ρvivj + Pδij and (3.31)

T = −ρ
[
1 + Π + v2

]
+ ρv2 + 3P where T = gµνT

µν . (3.32)

Again, we want to use the trace-reversed Einstein equations. We’ll start with the 0i-
component, which gives

∇2Bi + ∂i∂0U = 16πGNρvi. (3.33)

Using the identity (3.22), this becomes

∇2Bi = −∇2

(
7

2
Vi +

1

2
Wi

)
⇒ Bi = −7

2
Vi −

1

2
Wi. (3.34)

The 00-component gives

∇2(χ2 + U2 − 4Φ2) = ∇2 (2Φ1 − 2Φ2 + Φ3 + 3Φ4) (3.35)

and so one finds
χ2 = −U2 + 2Φ1 + 2Φ2 + Φ3 + 3Φ4. (3.36)

Exercise:

If one expands gµν = ηµν + hµν show that:

R00 = −1

2
∇2(h00 + 2U2 − 8Φ2) +O(3) (3.37)

R0i = ∇2h0i + ∂0∂iU +O(2.5) (3.38)

Rij = ∇2hij +O(2) (3.39)

(3.40)

You will need to use the O(1) solution h00 = hij = 2U and several of the identities given in
(3.22) and (3.25) and (3.26).

Putting it all together, the post-Newtonian metric is

g00 = −1 + 2U − 2U2 + 4Φ1 + 4Φ2 + 2Φ3 + 3Φ4

g0i = −7

2
Vi −

1

2
Wi

gij = (1 + 2U)δij . (3.41)
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This is the general relativity prediction for the geometry of space-time up to O(1/c4) outside
an isolated object. What we could do now is go ahead and try to calculate things like
the corrections to the properties of orbits or the bending of light, but, as we remarked in
the introduction, this is very cumbersome and there is a standard procedure for comparing
experimental measurements with theory once the metric has been found. Furthermore, the
specific form of the post-Newtonian metric (3.41) is not very enlightening; there are no
specific terms that correspond to individual new effects. For example, we all know that
general relativity causes the perihelion of Mercury to precess but the rate of precession is
not linked to the presence of one term; several different terms contribute. This is made even
more complicated by the fact that post-Newtonian corrections to the two-body problem are
of a similar magnitude to the corrections coming from Newtonian sources such as the finite
size of the Sun and perturbations from other celestial objects such as Venus and the Earth.
For this reason, we turn our attention to the generalised framework. This will allow us to
gain a better insight into the general relativity post-Newtonian metric; the terms that could
be present but are not tell us a lot about the structure of gravity.

3.3 The Parametrised Post-Newtonian Framework

We can see that not all of the metric potentials that could be present in the metric actually
appear in general relativity but there are many alternate theories where they might. Calcu-
lating the 2PN metric in general relativity was straight-forward but any quick glance at a
text book on post-Newtonian gravity reveals that translating this into the motion of celestial
objects is a long and cumbersome process. Rather than have to solve the two-body problem
at 2PN for every theory of gravity, theorists in the 70’s and 80’s developed a parametrised
post-Newtonian framework (PPN) for testing gravity in the solar system. The PPN metric
in the gauge (3.23) and (3.24), which are known as quasi-Cartesian coordinates, is

g̃00 = −1 + 2U − 2βU2 − 2ξΦW + (2γPPN + 2 + α3 + ζ1 − 2ξ)Φ1 + 2(3γPPN − 2β + 1 + ζ2 + ξ)Φ2

+2(1 + ζ3)Φ3 + 2(3γPPN + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A− (α1 − α2 − α3)w2U − α2w
iwjUij

+(2α3 − α1)wiVi, (3.42)

g̃0i = −1

2
(4γPPN + 3 + α1 − α2 + ζ1 − 2ξ)Vi −

1

2
(1 + α2 − ζ1 + 2ξ)Wi −

1

2
(α1 − 2α2)wiU

−α2w
jUij , (3.43)

g̃ij = (1 + 2γPPNU)δij . (3.44)

This needs some explanation. First, note that all of the metric potentials (3.21) that we said
could potentially appear in the metric are present. This is because we want to encompass
as many theories of gravity as possible. The parameter γPPN was discussed above and
parametrises deviations from general relativity in the Newtonian limit7. In particular, it
determines the angle through which light is bent by the Sun. The other nine parameters β, ξ,
αi and ζi parametrise deviations from general relativity. In particular, the case γPPN = β = 1,
ξ = αi = ζi = 0 corresponds to the general relativity prediction we calculated above. Finally,
there is the quantity wi. This is the velocity of the solar system relative to the mean rest
frame of the universe. This appears because there may be preferred frame effects in theories
of gravity that include aethers or fixed external fields. These are parametrised by the αi

7It also appears in many post-Newtonian expressions, for example, the expression for the perihelion advance
of Mercury.
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parameters, which are typically non-zero due to the effects of cosmological scalars and vectors.
The PPN metric is written in this form rather than placing an arbitrary parameter in front of
each metric potential so that each parameter carries a physical interpretation. I will outline
this briefly below:

• γPPN — The amount of spacial curvature produced per unit rest mass. This alters the
motion of light relative to non-relativistic particles.

• β — The amount of non-linearity in the superposition law for gravity. This affects the
motion of binary objects, for example, it causes a periodic shift in the perihelion of
Mercury.

• ξ — The Whitehead parameter. General relativity requires one to solve for the metric
before solving for the motion of particles. Alfred North Whitehead saw this as acausal
and introduced a new theory in 1922 where the physical metric seen by particles only
depends on quantities evaluated along their past light-cone. The theory makes iden-
tical predictions to general relativity except that ξ = 1 and passes all of the classical
tests including light bending and the perihelion shift of mercury. It remained a viable
competitor to general relativity until 1971 when it was pointed out that when ξ 6= 0
there are anisotropies in the local value of GN in three-body systems. This results in
large unobserved tides on Earth due to the motion of the solar system through the
Milky Way. ξ is zero in the majority of alternate theories of gravity but is non-zero in
quasi-linear theories.

• α1 and α2 — These describe preferred frame effects. They are typically zero unless
the theory violates Lorentz invariance or contains some sort of aether. Theories with
non-zero cosmological vectors typically act as an aether.

• ζi — These are the so-called conservation law parameters. When they are non-zero,
the theory lacks the conservation laws that usually arise due to translational invariance
such as energy and momentum conservation.

• α3 — This is both a preferred frame and conservation law parameter.

Not only do these parameters tell us about deviations from general relativity but they also tell
us about conservation laws. Recall that the Poincare group (Lorentz group + translations)
group has 10 conserved currents Pµ, the energy and momentum and Jµν , the angular mo-
mentum. It turns out that these are only conserved in a curved space if certain combinations
of the parameters are zero. There are three classes of theories

1. Conservative theories: These have αi = ζi = 0 and conserve both Pµ and Jµν .

2. Semi-Conservative theories: These have ζi = α3 = 0 and either α1 or α2 non-zero. In
this case Pµ is conserved but Jµν is not.

3. Non-Conservative theories: These have one of ζi or α3 non-zero and do not conserve
any quantities.

There is a theorem that any theory that can be derived from a diffeomorphism-invariant
Lagrangian is at least semi-conservative. We end this section by presenting the current
bounds on the PPN parameters in table 3.3.
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Parameter Constraint Experiment

γPPN − 1 2.5× 10−5 Light bending by the Sun measured by the Cassini probe
β − 1 3× 10−3 Perihelion shift of Mercury
ξ 10−3 Gravimetric data about the Earth’s tides
α1 10−4 Orbit polarisation measured using Lunar Laser Ranging
α2 4× 10−7 Spin precession of the Sun’s axis with respect to its ecliptic
α3 4× 10−20 Pulsar spin-down statistics
ζ1 0.02 Combined PPN bounds
ζ2 4× 10−5 Binary pulsar acceleration
ζ3 10−8 Newton’s third law measured using the acceleration of the Moon
ζ4 0.4 Difference in active and passive mass between bromine and fluorine.

3.3.1 The PPN Metric for Scalar-Tensor Theories

As an example of how to apply the PPN formalism, let’s look at one of these alternate theories
I keep talking about: scalar-tensor theories. These theories include a new scalar field φ and
are described by the action

S =

∫ √
−g 1

16πG

[
R

2
− 1

2
∂µφ∂

µφ

]
+ Sm[g̃µν ]. (3.45)

The metric that couples to matter is not the Einstein frame metric gµν but instead it is the
Jordan frame metric

g̃µν = A2(φ)gµν . (3.46)

One very common choice of coupling function is

A(φ) = eαφ, (3.47)

where α is a constant. The equations for the tensor gµν are simply the Einstein equations
sourced by both matter and the scalar

Gµν = 8πG (Tµν + Tφ, µν) (3.48)

where

Tφ, µν =
1

8πG

(
∂µφ∂νφ−

1

2
∂µφ∂

µφgµν

)
. (3.49)

Note that I have used G ≡ (8πMpl
2)−1 here and not GN. It is often the case in alternate

theories of gravity that what you call G in the action is not the same thing as GN, the locally
measured value of Newton’s constant, and so it is best to distinguish between the two. One
also needs the scalar field’s equation of motion, which is

�φ = −8πGT
d lnA

dφ
, (3.50)

where � = gµν∇µ∇ν . Since it is the Jordan frame metric that couples to matter we need to
compute this in the same manner that we did before. The added complication is the scalar.
We will make the ansatz that φ = φ0 +φ1 +φ2 where φ0 is the cosmological value of the field,
φ1 ∼ O(1) is the Newtonian field (1PN) and φ2 ∼ O(2) is the post-Newtonian field (2PN).

– 15 –



We will set φ0 = 0 so that A(φ0) = 18. Note then that the Jordan frame metric is, to the
appropriate order,

g̃00 =
(
−1 + 2[χ1 − αφ1] +

[
2χ2 + 2αφ2 + α2φ2

1

])
g̃0i = Bi

g̃ij = (1 + 2Ψ + 2αφ1)δij , (3.51)

where the metric potentials have been defined in the Einstein frame according to (3.25).
In particular, the g̃00 component at O(1) is χ1 − αφ1 and so we have an effective value of
χ̃1 = χ1 − αφ1. This means that in the Jordan frame, the energy-momentum tensor is given
by (3.28) with χ1 → χ̃1. The only complication here is that the energy-momentum tensors
in the different frames are related via

Tµν = A6(φ)T̃µν . (3.52)

The physical quantities such as the coordinate velocity, the density and pressure etc. should
be defined in this frame since it is the frame in which gravity is minimally coupled and
one has ∇µT̃µν = 0. ∇µTµν 6= 0 in the Einstein frame since the scalar couples to matter
and instead we have ∇µ(Tµν + Tµνφ ) = 0. It turns out that at the post-Newtonian level
this, theory is indistinguishable from general relativity and that the only change is at the
Newtonian level. For this reason, I will only calculate the Jordan frame metric to O(1). To
this order, T̃µν = Tµν and so we can use all of the formulae given in the previous section
provided that we work to O(1) only. Also, we do not need to worry about Tφ ,µν . The reason
is the following: expanding it out around the cosmological field value φ0 to O(1) one finds

T 00
φ = 0

T 0i
φ = −φ̇0

T ijφ = 0. (3.53)

The only non-zero term is in T ij and this is multiplied by φ̇0. Since φ0 is a cosmological
scalar we expect φ̇0 ∼ H0φ0 � ∂ihµν and so one can ignore the scalar’s contribution to the
energy-momentum tensor. This is an important feature of alternate theories of gravity, the
local space-time curvature should be sourced by the matter and not the scalar. With this
simplification, at O(1) the Einstein equations are identical to general relativity and so one
has

χ1 = Ψ = U, (3.54)

with the caveat that U is defined using G and not GN. We will return to this later. Now
let’s solve for the scalar. To O(1) we have T = −ρ and so equation (3.50) is

∇2φ1 = 8απGρ⇒ φ1 = −2αU. (3.55)

This is all we need to solve for the O(1) metric. Putting the solutions for χ1, Ψ and φ1 into
the Jordan frame metric (3.51) we have

g̃00 = −1 + 2U(1 + 2α2)

g̃0i = 0

8We can always rescale the Jordan frame coordinates at zeroth-order so that this is the case.
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g̃ij =
[
1 +

(
1− 2α2

)
U
]
δij . (3.56)

This is not in the PPN form because the coefficient of U in g̃00 6= 1 (see (3.42)). This is
because what we called G in the action is not the same as GN. Since U contains a factor of
G we can define GN ≡ (1 + 2α2)G, in which case we have

g̃00 = −1 + 2U

g̃0i = 0

g̃ij =

[
1 + 2U

(
1− 2α2

1 + 2α2

)]
δij , (3.57)

where U is now defined using GN. Comparing with (3.44), we see that this is now in PPN
form with

|γPPN − 1| = 4α2

1 + 2α2
. (3.58)

Now comes the power of the PPN formalism: Rather than deriving the effects of γ 6= 1 on the
motion of light and particles we know that the strongest constraint on its value in a metric
of the PPN form comes from the Cassini probe, which constrains this quantity to be smaller
than 10−5. This imposes the constraint

4α2 <∼ 10−5. (3.59)

Scalar-tensor theories are highly constrained.

Exercise:

More general scalar-tensor theories can be parametrised as follows:

lnA(φ) = α0(φ− φ0) +
1

2
β0(φ− φ0)2 + . . . . (3.60)

Using this parametrisation, calculate the Jordan frame metric to 2PN order and show that

γPPN =
1− 2α2

0

1 + 2α2
0

, β =
α2

0β0

2(1 + 2α2)2
, αi = ζi = ξ = 0. (3.61)

You will need to make sure you scale G by the appropriate factors of α0 when you convert
to GN.

4 Screening Mechanisms

Many people who study alternate theories of gravity are interested in the cosmological con-
stant problem and looking for accelerating solutions but there is no way that a theory like
the one that we studied above can possibly have any major effect on the expansion of the
universe if the only new parameter α is five orders-of-magnitude smaller than unity. The
problem with many alternate theories of gravity is that solar system tests are so strong that
they render the theory irrelevant on all scales. What would be nice if there was some sort
of mechanism where the scalar’s effects are negligible in the solar system but important for
cosmology. To see if this is possible, let’s look at what went wrong above. Written in the
Einstein frame, the theory looked like Einstein’s equations plus an extra equation for the
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scalar. When written in the Jordan frame, we found that the metric potential χ̃1, which
governs non-relativistic geodesics, was related to the Einstein frame potentials via

χ̃1 = χ1 − 2αφ1. (4.1)

Now χ1 satisfied the Poisson equation of general relativity

∇2χ1 = −4πGρ⇒ χ1 = 2U (4.2)

but so did the scalar up to a factor of −2α:

∇2φ1 = 8πGαρ⇒ φ1 = −2αχ1. (4.3)

When put together, this means
χ̃1 = (1 + 2α2)χGR

1 . (4.4)

This means that observers making measurements with respect to the Einstein frame metric
see a value of GN = (1 + 2α2)G. Screening mechanisms attempt to hide modifications of
general relativity by changing the Poisson equation for φ such that the solution is very
different from U . When written in the Einstein frame, the theory looks like one with a
gravitational- and an additional fifth-force

~FN = −∇U, ~F5 = −α∇φ, (4.5)

and so the solution of the new Poisson equation should satisfy α|∇φ|/|∇U | � 1 in the
Einstein frame. There are two very different approaches to this. One is to somehow kill
of the source for the Poisson equation so that no scalar gradients are generated by massive
objects, and the other is to change the derivative interactions on the left hand side so that
the solution is very different from U . In this lecture we will examine both of these. From
here on I will change notation from φ1 to φ. The reason for this is that screening mechanisms
tend to be non-linear in the field equations and it does not make sense to split them up into
PPN orders any more.

4.1 Killing off the Source

Killing off the source on the right hand side of the Poisson equation is the method used by
chameleon and symmetron theories. This is achieved by adding a scalar potential to the
action so that it is now

S =

∫
d4x
√
−g 1

8πG

[
R

2
− 1

2
∇µφ∇µφ− V (φ)

]
+ Sm[A2(φ)gµν ]. (4.6)

In this case, the Einstein equations are still the same and we can still ignore the scalar’s
contribution to the energy-momentum tensor but the scalar’s equation is modified to

�φ = −8πGT
d lnA

dφ
+ V ′(φ) = V ′(φ) + 8πG

d lnA

dφ
ρ. (4.7)

The right hand side looks like an effective potential for the scalar:

Veff = V (φ) + ρ lnA (4.8)
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Figure 2. A spherical gravitational source. The entire object sources the gravitational fields χ1 and
Ψ but only the mass in the shell sources the scalar φ.

and we can use this to our advantage. The idea is the following. Suppose we choose V (φ)
and A(φ) such that Veff(φ) has a minimum at some φmin. φmin depends on ρ and so the
minimum inside objects will be different from the minimum in the cosmological background.
This means that inside the object, the field will want to move to reach the value φmin(ρ).
Since φmin(ρ) is the solution of V ′eff(φmin) = 0, the field equation is simply

∇2φ = 0. (4.9)

The equation for the field is unsourced and there is no scalar gradient and hence fifth-force. At
some point, the field will have to move away from the minimum and towards its cosmological
value and we expect some intermediate scale where we have fifth-forces. The essence of the
screening mechanism is that it is possible to find parameters where this only happens in a
very narrow shell near the surface. In this case, the field outside is only sourced by this very
thin shell and the fifth-force is very heavily suppressed. This is shown schematically in figure
2.

Let’s see how this works in practice. We start by defining a parameter α similar to the
one above via

α ≡ d lnA

dφ

∣∣∣∣
φ=φ0

(4.10)

and restrict to the case of spherical symmetry. We split the object into two regions separated
by some screening radius rs shown in figure 2. When r < rs the field minimises its potential
so that φ = φmin. There is no source for the field in this region and φ′ = 0. Outside, equation
(4.7) becomes

∇2φ = V ′(φ) + 8παGρ r > rs (4.11)

Let’s make the further assumption that V ′(φ) can be neglected with r > rs. This is a
valid assumption because V ′(φ) ≈ m2

0φ, where m2
0 = V ′′(φ0) is the mass of the field in the

cosmological background. This is typically of order H−2
0 whereas ∇2φ ∼ φ/R2, where R is

the radius of the object and so the mass term is negligible compared with the Laplacian. In
this case, the equation of motion reduces to

1

r2

d

dr

(
r2 dφ

dr

)
= 8παGρ r > rs. (4.12)

This can easily be integrated using the fact that the mass enclosed inside a radius r is

M(r) = 4π

∫
r2ρ(r) dr (4.13)
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Object ΦN

Earth 10−9

The Sun 2× 10−6

Main-sequence stars 10−6–10−5

Local group 10−4

Milky Way O(10−6)
Spiral and elliptical galaxies 10−6–10−5

Post-main-sequence stars 10−7–10−8

Dwarf galaxies O(10−8)

Table 1. The Newtonian potential of different astrophysical objects.

to find

F5 = α
dφ

dr
= 2α2GM

r2

[
1− M(rs)

M(r)

]
r > rs. (4.14)

The familiar factor of 2α2 is still there but now it is multiplied by a factor of

Q ≡
[
1− M(rs)

M(r)

]
. (4.15)

When the screening radius is close to the radius of the object, R ,we have M(rs) ≈M , where
M ≡M(R) is the total mass of the object and so Q� 1. In this case the object is screened.
In the opposite limit where rs = 0 we have Q = 1 and the fifth-force is a factor of 2α2 larger
than the Newtonian one. In this case the object is unscreened. We will not show it here but
the the screening radius is determined by the self-screening parameter9

χ0 ≡
φ0

2α
. (4.16)

In particular the screening radius is determined implicitly through the relation

χ0 = 4πG

∫ R

rs

rρ(r) dr. (4.17)

When dealing with objects of mass M and radius R a good rule of thumb to determine
whether they are screened or not is:

• If χ0 < GM/R the object is self-screening

• If χ0 > GM/R the object is at least partially unscreened.

This is a good criterion to use when deciding if a certain astrophysical system will be un-
screened or not and gives us a good idea of where to test these theories. Note that for the
Sun and the Milky Way GM/R ∼ 10−6 and so χ0 < 10−6 is a rough constraint found by
requiring that they are screened. Dwarf galaxies have GM/R ∼ 10−8 and so a lot of effort
has been focused on looking at these systems as potential probes. The Newtonian potentials
of some useful astrophysical objects are given in table 4.1.

9Technically, objects can be screened by their neighbours but we will not deal with this complication here.
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Now let’s go back and look at the solution outside the object, which is

χ1 = Ψ =
GM

r
(4.18)

αφ = −Q(R)GM

r
, (4.19)

where Q(R) = 1−M(rs)/M . This gives the Jordan frame metric to 1PN as

g̃00 = −1 + 2U (1 +Q) (4.20)

g̃0i = 0 (4.21)

g̃ij = [1 + 2U (1−Q)] δij . (4.22)

Setting GN = (1 +Q)G we can bring this into PPN form with

γPPN =
1−Q
1 +Q

. (4.23)

The difference now is that α can in principle be large because Q� 1 (provided χ0 < 10−6).
This means that this theory has no trouble passing the Cassini bound and it is still possible
to have interesting effects on cosmological scales.

4.1.1 Two Examples: The Chameleon Mechanism

The first example of a theory that utilised this mechanism was chameleon screening. The
coupling function and scalar potential are

V (φ) =
M4+n

φn
, A(φ) = eαφ, (4.24)

with α constant. The effective potential is then

Veff(φ) =
M2

φn
+ 8παGρ, (4.25)

which has a density-dependent minimum at

φ(ρ) =

(
nM2

8παGρ

) 1
n+1

. (4.26)

This is shown in figure 3. One can see that this potential has all of the properties that we
need: If we consider a spherical over-dense object then the effective potential will have two
minima, one inside the object and one inside the low-density background. Furthermore, the
effective mass at the minimum is

m2
eff = V ′′eff(φmin) = n(n+ 1)M2

(
8παGρ

nM

)n+2
n+1

. (4.27)

This is an increasing function of density and so the mass at the high density minimum can be
several orders-of-magnitude larger than the mass at the low density minimum. Recall that
the force-law for a massive scalar is of the Yukawa form

F ∝ e−meffr

r2
. (4.28)
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Figure 3. The effective potential for chameleon screening. The left panel shows the effective potential
in low-desnity environments and the right shows the same potential in high-density environments. The
Black dashed line shows the scalar potential V (φ) and the red dotted line shows the coupling function
ρeαφ. The effective potential, which is the sum of the two, corresponds to the blue solid line.

In practice, the parameter M is chosen such that meff
<∼ O(µ m) so that the fifth-force

operates over ranges shorter than the most precise table-top experiments can probe. The non-
linear field equation for the scalar opens up exciting possibilities of searching for chameleons
using laboratory experiments with different geometries and densities but this is beyond the
scope of these notes.

Before moving on, let’s look at a very popular class of models: F (R) theories. It turns
out that these are chameleons in disguise. The action for these theories is

S =

∫
d4x
√
−g̃ f(R)

16πG
+ Sm[g̃µν ], (4.29)

where R = R(g̃). One can write this in an equivalent way using a new variable ψ:

S =

∫
d4x

√
−g̃

16πG

[
f(ψ) + f ′(ψ)(R− ψ)

]
+ Sm[g̃µν ]. (4.30)

If f ′′(ψ) 6= 0 the equation of motion for ψ is ψ = R, which can be put back into the action
to recover (4.29). Next, we set Φ = f ′(ψ) to find

S =

∫
d4x

√
−g̃

16πG
[ΦR− V (φ)] + Sm[g̃µν ], (4.31)

where
V (Φ) = ψ(Φ)Φ− f(ψ(Φ)). (4.32)

Finally, setting Φ = e
−
√

2
3
φ

and applying a Weyl rescaling to g̃µν such that g̃µν = A2(φ)gµν

with A(φ) = e
φ√
6 one finds (after removing a total derivative proportional to �φ)

S =

∫
d4x

√
−g

8πG

[
R(g)

2
− 1

2
∇µφ∇µφ− V (φ)

]
+ Sm[A2(φ)gµν ], (4.33)

with

V (φ) =
Rf ′(R)− f(R)

2f ′(R)2
. (4.34)
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Provided one chooses f(R) such that V (φ) is of the chameleon form then the theory is a
chameleon with α = 1/

√
6. f(R) theories are very popular in the literature because the

coupling α is fixed and so there is only one free parameter: χ0. In the language of f(R)
theories, people often work with the parameter fR0 = f ′(R) evaluated at the present time
in the cosmological background. In terms of χ0, one has χ0 = 3/2fR0. The most common
example of an f(R) theory that exhibits chameleon screening is the Hu & Sawicki model:

f(R) = R−m2 c1(R/m2)n

1 + c2(R/m2)n
. (4.35)

Exercise:

Consider the Weyl rescaling:

g̃µν = A2(φ)gµν . (4.36)

Show that: √
−g̃ = A4(φ)

√
−g (4.37)

R(g̃) = A−2 [R(g)− 6�ω − 6gµν∇µω∇νω] , (4.38)

with ω = lnA. Use this to transform equation (4.31) into equation (4.33). You will find
Wald, appendix D useful.

4.1.2 Two Examples: The Symmetron Effect

The symmetron is described by the potential and coupling function

V (φ) = −µ
2φ2

2
+ λ

φ4

8πG
, A(φ) = 1 +

αφ2

2
(4.39)

so that the effective potential is of the Z2-symmetry breaking form

Veff(φ) =
µ2

2

(
8παGρ

µ2
− 1

)
φ2 + λ

φ4

8πG
=
µ2

2

(
ρ

ρ?
− 1

)
φ2 + λ

φ4

8πG
, (4.40)

with ρ? = µ2/8παG. This is plotted in figure 4 for both ρ > ρ? and ρ < ρ?. One can
see that when ρ < ρ? the Z2 symmetry is broken and the potential has a minimum at
φ± ≈ ±µ

√
2πG/λ. When ρ > ρ? the symmetry is restored and the only minimum lies at

φ = 0. We want to screen inside high-density objects and so one typically chooses the model
parameters such that ρ? lies between the cosmological density ρc ∼ 3H2

0Mpl
2Ωm0 and the

central density of the object in question. When this is the case, the theory has all of the
features we want: there are two distinct density-dependent minima. That being said, the
screening mechanism is very different from the chameleon mechanism we saw above. In order
to screen at sub-cosmological densities we require µ2 <∼ H2

0 . The effective mass of the field is
then meff ∼ µ <∼ H0 and so the field is always very light. Instead of altering the range of the
force, the symmetron screens the force because the coupling α(φ) ≈ 0. The fifth-force (4.5)
is

~F5 = −α(φ)∇φ ≈ αφ∇φ. (4.41)

Provided the field has reached its symmetry restoring minimum i.e. φ = 0 this is identically
zero.
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Figure 4. The effective potential for the symmetron. The left panel shows the low-density, symmetry
broken phase and the right panel shows the high-density, symmetry restoring phase.

4.2 New Derivative-Interactions: The Vainshtein Mechanism

Another way to suppress scalar forces is to alter the Poisson equation to include additional
derivative interactions. For example, consider the Poisson equation for a spherically sym-
metric body

d

dr

(
r2 dφ

dr

)
= 8παGr2ρ. (4.42)

This is a total derivative that can be integrated to give,

r2φ = αGM ⇒ α∇φ = 2α2GM

r2
(4.43)

which is how we recover the inverse-square law. One can see that F5/FN = 2α2 as we found
above. Suppose then that we were to have a different operator other than the Laplacian, for
example

1

Λ4

d

dr

[(
dφ

dr

)3
]

= 8παGr2ρ, (4.44)

where we have included a new mass-scale Λ for dimensional consistency. This too is a total
derivative and can be integrated to give

dφ

dr
=
(
2αΛ4GM

) 1
3 . (4.45)

One can see that the scalar force-law is very different from inverse-square, in fact, it is
constant. The ratio of the fifth- to Newtonian force (GM/r2) is then

F5

FN
=
α dφ/ dr

dΦN/ dr
= 2α2

(
r

rV

)2

r3
V ≡ 2α

GM

Λ2
. (4.46)

rV is known as the Vainshtein radius and it can be made as big as we like because Λ is a free
mass scale that we can make as small as we like. The fifth-force is then highly suppressed
whenever r < rV. This is the Vainshtein mechanism. We will give an example of a common
theory that exhibits it below.
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4.2.1 Example: Cubic Galileons

Galileon theories have received a lot of theoretical attention lately due to their links with
massive gravity and powerful non-renormalisation theorems. Here, we are only interested
in their small-scale behaviour. Galileon theories are invariant under the galileon symmetry
φ → φ + bµx

µ + c when expanded around Minkowski space and it turns out there are four
possible derivative operators that one can write down in four dimensions. The simplest is
the cubic galileon:

S =

∫
d4x

√
−g

8πG

[
R

2
− 1

2
∂µφ∂

µφ− 1

Λ2
∂µφ∂

µφ�φ

]
+ Sm[g̃µν ], g̃µν = e2αφgµν . (4.47)

The name cubic galileon derives from the fact that the new operator action contains thee
fields. Similarly, there are quartic and quintic galileons. Despite being higher-order, the
galileon shift symmetry ensures that the equations of motion are second-order and the theory
is therefore free of the Ostrogradski ghost instability. Since we are working in the Einstein
frame, the equations of motion for the metric are Einstein’s equations and the scalar equation
of motion is

�φ+
2

Λ2

[
(�φ)2 −∇µ∇νφ∇µ∇νφ

]
= 8παGρ. (4.48)

In the case of a static spherically symmetric configuration this becomes

1

r2

d

dr

[
r2 dφ

dr
+

r

Λ2

(
dφ

dr

)2
]

= 8παGρ. (4.49)

We can recognise the first term as the usual contribution from the Laplacian. The second
term is the new contribution from the cubic galileon operator. This can be integrated once
to give

dφ

dr
+

1

Λ2r

(
dφ

dr

)2

= 2α
GM

r2
. (4.50)

Note that the right hand side is 2α times the Newtonian force and so we can begin to see
the Vainshtein mechanism at work. In the absence of the cubic galileon we are back to the
case studied above where F5 = 2α2FN, but the presence of the galileon term changes this.
One can already see that the second term dominates at small distances but let’s put this on
a more concrete footing. Introducing the Vainshtein radius

r3
V =

GM

αΛ2
(4.51)

and setting dφ/dr = F5/α we can divide by FN = GM/r2 to find

F5

FN
+
(rV

r

)3
(
F5

FN

)2

= 2α2. (4.52)

One can then see the Vainshtein mechanism at work. When r � rV the new term dominates
over the Laplacian and we have

F5

FN
= 2α2

(
r

rV

) 3
2

(4.53)

whereas when r � rV the new term is suppressed and we recover the inverse-square be-
haviour. This is shown in figure figure 5.
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Figure 5. Vainshtein screening of a spherical object.

Exercise:

Use equation (4.48) to derive equation (4.49). The Christoffel symbols are not zero, despite
the fact that we are working in a flat space-time and you will need to use this.

Whether or not an object screens then depends on the Vainshtein radius. Lunar Laser
Ranging measures the motion of the Moon about the Earth very precisely and constrains
deviations in the gravitational potential:

δΦN

ΦN
< 2.4× 1011. (4.54)

Using equation (4.53) we have

δΦN

ΦN
= 2α2

(
r

rV

) 3
2

. (4.55)

The Earth-Moon distance is 3.84× 108 m and so one finds r⊕V > 7.3× 1015m ∼ O(10−1) Pc
for α = 1. Now note that

r3
V =

rS

Λ2
, (4.56)

where rS is the Schwarzchild radius. This is 9 mm for the earth and so one has Λ2 =
2.3× 10−53 mm−2 if we assume the LLR bound is just satisfied. The Schrwazchild radius of
the Sun is ∼ 3 km and so we find r�V ∼ O(pc). The Vainshtein radius of the Sun is larger
than the solar system. One can see that Vainshtein screening is incredibly efficient. This is
both a blessing and a curse: deviations from general relativity are well hidden but finding
novel probes of the mechanism is incredibly difficult.
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4.3 Equivalence Principle Violations

We end this chapter by discussing the most important difference between the two screening
mechanisms: violations of the equivalence principle. General relativity was founded on the
equivalence principle: The motion of test-bodies is independent of their structure and com-
position. This appears in the Newtonian limit of general relativity as follows. We know that
the geodesic equation gives us the force-law

M~̈x = −M∇Φext
N (4.57)

in the non-relativistic limit. Here, Φext
N refers to the Newtonian potential generated by some

external body e.g. the Sun. The mass on the left-hand side is the inertial mass, it is the
mass we put into the point-particle action

S = −M
∫

ds
√
−gµν ẋµẋν , (4.58)

where in this one instance a dot denotes a derivative with respect to the proper time s. The
mass on the right hand side is the gravitational mass. This should be thought of more as a
gravitational charge in analogy with electromagnetism. It tells us how strongly a test-body
responds to an external gravitational field Φext

N . The fact that MLHS = MRHS means that
they cancel and the motion of a non-relativistic particle is independent of its mass. This is
the equivalence principle. In scalar-tensor theories, (4.57) is generalised to

M~̈x = −M∇Φext
N −Q∇φext, (4.59)

where Q is the scalar gravitational charge. One can see that if Q = M or Q = 0 the
equivalence principle is satisfied. Deriving the value of Q in these theories is a long and
cumbersome process and so rather than provide a hand-wavy, incorrect proof, I will simply
state the results here:

Q = M
[
1− M(rs)

M

]
, Chameleons

Q = M Vainshtein.
(4.60)

Chameleon-like theories do not satisfy the equivalence principle because Q 6= M unless
the screening radius is zero or equal to the radius of the object i.e. unless the object is
fully screened or fully unscreened. Theories that screen using the Vainshtein mechanism do
satisfy the equivalence principle10. The equivalence principle is very well tested in the solar
system and this allows one to constrain chameleon theories but not those that screen using
the Vainshtein mechanism.

5 Non-Relativistic Stars: A Laboratory for Testing Fundamental Physics

In this final chapter, we will look at the structure of non-relativistic stars and see how they
can be used to test alternate theories of gravity.

10The one exception to this is black holes but we are not interested in highly relativistic objects here.
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5.1 Stellar Structure Equations

We begin by deriving the equations of stellar structure. Non-relativistic stars are spherical to
a good approximation and, we can treat them as a perfect fluid described by their Eulerian
pressure P and density ρ. Working in the rest-frame of the star, we have γ = 1 and so
uµ = (1,~0). The energy momentum tensor (3.11) is then

Tµν = diag(ρ, P, P, P ). (5.1)

The space-time is
ds2 = −(1− 2Φ) dt2 + (1 + 2Ψ)δij dxi dxj . (5.2)

The equation of motion for the fluid is given by the zero-component of

∇µTµν = 0, (5.3)

which results in
dΦ

dr
= −1

ρ

dP

dr
. (5.4)

Note that we have not specified the theory of gravity, all we have done is assume that Tµν is
conserved, which means we are working in the Jordan frame. The theory of gravity determines
dΦ/ dr so let’s specialise to general relativity for now and set dΦ/dr = GM(r)/r2. This
gives us the hydrostatic equilibrium equation:

dP

dr
= −GM(r)ρ(r)

r2
. (5.5)

We also have an equation for M(r):

dM(r)

dr
= 4πGr2ρ(r) (5.6)

but this does not close the system of equations and allow us to solve for P (r) and ρ(r). In
order to do this we must specify non-gravitational physics. First, we know that in order to
support themselves against gravitational collapse, stars must burn fuel in their centres. If εi
is the energy released per unit mass from the ith burning process in the core and ε̄i is the
energy lost in that process (e.g. from neutrinos produced in the reactions, that stream away)
then the luminosity, the energy released per unit time, is given by

dL(r)

dt
= 4πr2ρ(r)

(∑
i

εi −
∑
i

ε̄i

)
. (5.7)

This is the energy generation equation. The surface luminosity L ≡ L(R) is one of the most
important stellar parameters since it is directly observable. Another observable quantity is
the effective temperature Teff . The temperature gradient in a star is given by the radiative
transport equation

dT

dr
= − 3

4a

κ(ρ, T )

T 3

ρL

4πr2
. (5.8)

Here a is a constant that appears in the pressure law for radiation (we will see this explicitly
in a moment) and κ(ρ, T ) is the opacity (the cross-section for radiation absorption per unit
mass). These equations still do not close as one needs to supply equations of state of the
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form κ(ρ, T ), P (ρ, T ) and εi = εi(ρ, T ). In practice, complicated numerical codes are needed
to solve these problems but there are several simplifying assumptions one can make in order
to gain valuable physical insights. The pressure in most stars is primarily due to the internal
motions of the gas particles as described by the idea gas law:

Pgas =
ρkBT

µmH
, (5.9)

where µ is the mean molecular mass and mH is the mass of Hydrogen, and the pressure due
to absorbing radiation in the interior:

Prad =
1

3
aT 4. (5.10)

In what follows we will consider these pressure laws only. Furthermore, to avoid dealing with
atmospheric models we will define the radius of the star R as the radius where the pressure
falls to zero i.e. P (r) = 0.

5.2 Scale-Invariance of the Stellar Structure Equations

One can make a lot of progress by noting that the stellar structure equations are scale-
invariant. To see this, consider the hydrostatic equilibrium equation (5.5). Since P has units
of GM/r4 we can see that if one scales P → PcxP , where Pc is the central pressure, r → Rxr,
M(r)→MxM and ρ(r)→ xρM/R3, where xi are dimensionless functions we have

Pc
dxP
dxr

= −GM
2

R4

xρxM
x2
r

. (5.11)

Now since xi are dimensionless we can immediately see that

Pc ∝
GM2

R4
. (5.12)

We have a relation for how Pc scales with G, M and R without having to have solved any
equations. Let’s see how far we can push this. Doing the same thing for the radiative transfer
equation we find

L ∝ R4T 4

M
. (5.13)

Now we need to decide what our equation of state is. If we assume that the star is gas
dominated we find

P ∝ MT

R3
⇒ T =

GM

R
(5.14)

using equation (5.9) and (5.12). If we instead assume it is radiation dominated we have, from
equation (5.10) and (5.12)

P ∝ T 4. (5.15)

Inserting these into equation (5.13) we have

L ∝ G4M3 gas
L ∝ GM radiation.

(5.16)

This gives us a mass-luminosity relation and shows us how the luminosity scales with the
strength of gravity. One can see that gas-supported stars are more sensitive to changes in G
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than radiation-supported stars. Furthermore, theories of gravity that predict stronger gravity
than general relativity predict that stars are more luminous whilst the converse is true for
theories that predict weaker gravity. Physically, this is because stronger gravity means fuel
must be burnt at a higher rate to provide the extra pressure gradient needed to stave off
gravitational collapse and hence the rate of energy release increases. Using equation (5.9)
and (5.10) one finds

Prad

Pgas
∝ T 3

ρ
∝ G3M2 (5.17)

and so one can see that low mass stars are gas-supported and high mass stars are radiation-
supported. Low mass stars are therefore a better probe of modified gravity11. One can also
see that increasing G makes stars more radiation supported at fixed mass.

5.3 Ploytropic Equations of State: The Lane-Emden Equation

One of the simplest choices for the equation of state is

P = Kρ
n+1
n . (5.18)

This is known as a polytropic equation of state and n is known as the polytropic index.
Polytropes are very important in stellar physics and can describe a variety of different stars.
For example, n = 3 describes low mass main-sequence stars and fully relativistic (white
dwarf) stars, n = 1.5 describes fully convective stars and n = 5 can be used to model
globular clusters. Let’s see what happens to the stellar structure equations if we assume this
equation of state. First, we define a few important quantities. Since the stellar structure
equations are scale invariant12 we can reduce the system to dimensionless form. First, we
define the dimensionless radial coordinate ξ via:

r = r0ξ, r2
0 =

(n+ 1)Pc

4πGρ2
c

, (5.19)

where a c refers to central quantities. Since the stellar radius is defined as the point where
P (R) = 0 it is useful to define ξR via θ(ξR) = 0. The stellar radius is then R = r0ξR. We
also define the dimensionless function θ(ξ) via

P = Pcθ
n+1

ρ = ρcθ
n. (5.20)

This gives us the relation Pc = Kρ
n+1
n

c . Dividing equation (5.5) by Gρ/r2 we have

r2

Gρ

dP

dr
= −M(r), (5.21)

which can be differentiated once using equation (5.6) to find

1

r

d

dr

(
r2

4πGρ

dP

dr

)
= −ρ(r). (5.22)

11Provided of course that one is trying to test it using the stellar luminosity.
12Actually, the symmetry is even larger than this. The stellar structure equations with a polytropic equation

of state are homology-invariant. This means that once you know one solution with one boundary condition
you actually know other solutions with different boundary conditions. This goes beyond the scope of the
course but it allows one to analyse the equations using very powerful mathematical techniques.
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Inserting the equation of state (5.18) and changing to dimensionless variables using (5.19)
and (5.20) we arrive at the famous Lane-Emden equation

1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −θn. (5.23)

This equation is non-linear and can only be solved in a few special cases, all of which are
uninteresting for testing gravity. These are given in box 1 for completeness. In practice
one needs to solve this numerically but this is simple and can be done using elementary
techniques such as the Runge-Kutta family of methods. We still need to specify the boundary
conditions. We know that the central pressure is given by Pc and so we clearly have θ(0) = 1.
The second boundary condition is forced on us by spherical symmetry: the pressure must
go to zero smoothly at r = 0 and so we have θ′(0) = 0. Some examples of the solutions
satisfying these conditions are shown in figure 6. With these conditions, one can show that
the behaviour of θ near the origin is

θ(ξ) = 1− ξ2

6
+

n

120
ξ4. (5.24)

This is useful when integrating the equations numerically because one cannot typically spec-
ify the boundary condition at ξ = 0 but instead must integrate from ξ = δ where δ � 1.

Box 1: Exact solutions of the Lane-Emden equation

n = 0 : θ(ξ) = C0 − C1
ξ −

1
6ξ

2

n = 1 : θ(ξ) = C0
sin ξ
ξ + C1

cos ξ
ξ

n = 5 : θ(ξ) = 1√
1+ξ2/3

,
(5.25)

where Ci are integration constants.

5.3.1 The Mass Radius Relation and the Chandrasekhar Mass

Typically, we cannot see inside stars and so, in some sense, Pc and ρc are meaningless quan-
tities. What we observe are quantities such as the mass, radius and luminosity. Polytropic
equations of state predict a mass-radius relation that we will derive here. First, we can
integrate equation (5.6) to give

M =

∫ R

0
4πr2ρ(r) dξ = 4πr3

0ρc

∫ ξR

0
ξ2θn(ξ) dξ = −4πr3

0ρc

∫ ξR

0

d

dξ

(
ξ2 dθ

dξ

)
= 4πωRr

3
0ρc, (5.26)

where we have used the Lane-Emden equation to replace θn and have defined

ωR ≡ −ξ2
R

dθ

dξ

∣∣∣∣
ξ=ξR

, (5.27)

which is a dimensionless number that must be computed numerically. Using (5.19) we find

M = 4πξ2
RωR

[
(n+ 1)K

4πG

] 3
2

ρ
n−3
2n

c , (5.28)
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Figure 6. Solutions of the Lane-Emden equation when n = 0 (black), n = 1 (yellow), n = 2 (red),
n = 3 (blue) and n = 4 (green).

which can be inverted to give

ρc =

[
M

4πωR

(
4πG

(n+ 1)K

) 3
2

] 2n
3−n

. (5.29)

Next, recall that

R = r0ξR =

[
(n+ 1)K

4πG

] 1
2

ξRρ
1−n
2n

c . (5.30)

Substituting for the central density using (5.29) we find

R ∝M
n−1
n−3 . (5.31)

This is the mass-radius relation. Note that for n = 1 the radius is independent of the mass
and for n = 3 i.e. a fully relativistic star, the mass is independent of the radius. This is
the origin of the Chandrasekhar mass: an upper limit for the mass of a white dwarf star.
Non-relativistic stars have n = 1.5 and fully relativistic stars have n = 3. When n = 3 and
the star is fully relativistic one has

M =
5.82

µ2
e

M�, (5.32)

independent of the central density. Here µe is the number of free electrons per atom. To

derive this we have used the numerical value K = 1.24 × 1015µ
−4/3
e (in cgs units), which

comes from statistical physics applied to a fully relativistic electron gas. If the mass of the
star is less than this it cannot be fully relativistic but, since any degenerate star cannot have
n > 3, this represents an upper limit for the mass: stars with a larger mass are unstable and
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collapse to form neutron stars. A helium white dwarf has µe = 2 because helium contributes
two electrons per atom and this gives an upper limit

MCh ≈ 1.4M�. (5.33)

5.4 Main-Sequence Stars: The Eddington Standard Model

Let’s now turn to more familiar stars: stars like the Sun. These are low mass stars that burn
hydrogen in their core. As we will see now, these are well described by Lane-Emden models
provided that we make one simple assumption: the Eddington approximation. Recall from
equation (5.17) that the ratio of the radiation to gas pressure in a star is proportional to
T 3/ρ. This is actually a very important quantity: it is the specific entropy i.e. the entropy
per unit mass. The Eddington approximation assumes that this is constant and hence the
ratio of the gas to radiation pressure is a constant. This is a good approximation for low
mass main-sequence stars that are not convective. We can then define the constant β via

β ≡ Pgas

P
⇒ Prad = (1− β)P. (5.34)

Equating Pgas/β with Prad/(1− β) we find

T 3

ρ
= 3a

kB

µmH

1− β
β

. (5.35)

The total pressure is then

P =
ρkBT

µmH
+

1

2
aT 4 = K(β)ρ

4
3 , (5.36)

with

K(β) =

(
3

a

) 1
3
(

kB

µmH

) 4
3
(

1− β
β4

) 1
3

. (5.37)

Currently, β is an unknown and so we want to relate it to an observable quantity: the mass.
Using equation (5.28) and the definition of r0 (5.19) we find

1− β
β4

=

(
M

Medd

)2

, (5.38)

where the Eddington mass is

MEdd =
4ωR
√
πG

3
2

(
kB

µmH

)2(3

a

) 1
2

≈ 18.2µ−2. (5.39)

Equation (5.38) is a quartic equation that can be solved numerically to find the value of β
for a star of mass M given the mean molecular mass µ. This is 1/2 for fully ionised hydrogen
since the contribution to the density from electrons is negligible.

Next, we want to compute something observable: the luminosity. Using P = Prad/(1−β)
in equation (5.5) and using equation (5.8) we find

L =
4π(1− β)GM

κ
, (5.40)

where L = L(R) is the surface luminosity. The opacity in hydrogen burning stars is due to
electron scattering, for which κ is a constant that is independent of T and ρ. This means
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that specifying the mass of a star alone is enough to determine its luminosity provided we
make some assumptions about its composition and opacity: given the mass, one can solve
Eddington’s quartic equation for β and hence find the luminosity using equation (5.40).

Finally, we note several drawbacks of the Lane-Emden approach:

• The Lane-Emden approach predicts that the surface temperature of the star is zero.
Since T 3/ρ is constant we have T ∝ θ for n = 3, which is zero at the surface of the
star. In practice, the effective temperature (or (B − V )) is one of the most important
observational properties of a star.

• Nuclear burning was not included. This means that the star is really just a ball of
gas supporting itself against gravitational collapse through some pressure that we have
specified by hand. For this reason, the star will not evolve in time and we can learn
anything about stellar evolution. The lack of nuclear burning means the mass-radius
and mass-luminosity relation we predicted is not quite correct.

• Many post-main-sequence stars are layered, both in terms of their composition and their
energy transfer (radiative or convective). Polytropic models assume a homogeneous
fluid but this can be accounted for by stitching together fluids with different values of
n.

That being said, it is these drawbacks that make polytropic models perfect tools for studying
alternate theories of gravity. The non-gravitational physics has been removed, which is
perfect for disentangling the effects of modified gravity from thermodynamic processes.

5.5 Application to Alternate Theories of Gravity

So far we haven’t actually applied this to alternate theories of gravity. As remarked earlier,
one can do this by substituting the modified solutions for dΦ/ dr into the hydrostatic equi-
librium equation (5.4) and repeating the derivations above. This is a complicated task for
the alternate theories we have discussed in this course; each one requires a separate paper.
Here, we will do something simpler and assume that we are working with an alternate theory
where

G = λGN, (5.41)

where λ is a dimensionless parameter that is given by the theory13. The strength of gravity
entered into the previous section in two places: the definition of the Eddington mass and
the formula for the total luminosity. Recall from equation (5.39) that MEdd ∝ G−3/2. This
means that

MEdd(λ) = λ−
3
2MGR

Edd = 18.2λ−
3
2µ−2. (5.42)

One therefore has to solve the modified form of Eddington’s quartic equation,

1− β
β4

= λ3

(
M

MEdd

)2

, (5.43)

13We learned in previous lectures that non-relativistic objects always respond to GN after one transforms
to the PPN gauge and so this shift in G is difficult to achieve in classical alternate theories of gravity. That
being said, we have also seen that this can be realised in modern theories such as chameleons and galileons
where stars in our solar system would respond to G = GN but stars in other galaxies can feel an effective
value of G different from GN as measured in the solar system. This simple model is then a good proxy for
theories with screening mechanisms.
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Figure 7. Left panel: The ratio of the luminosity of a solar mass star in modified gravity to the
general relativity prediction as a function of λ. Right panel: The same ratio as a function of mass for
λ = 1.3 (red) and λ = 0.9 (blue).

for β(λ). Using equation (5.40), we then have

LMG

LGR
=

[1− β(λ)]λ

[1− β(λ = 1)]
. (5.44)

This is plotted for a one solar mass star as a function of λ in figure 7. One can see that when
λ > 1, i.e. gravity is stronger than general relativity predicts, the luminosity is enhanced
whereas the converse behaviour is exhibited when λ < 1. This is in line with what we
discussed above: stronger gravity requires a faster rate of nuclear burning to prevent collapse
and hence a higher rate of energy generation; weaker gravity does not need to burn as quickly
and hence energy is produced at a lower rate. The ratio is plotted for λ = 1.3 and λ = 0.9
in figure 7. One can see the same behaviour where λ > 1 enhances the luminosity and λ < 1
reduces it. One can also see that low mass stars are more affected by changing G than high
mass stars. This is also what we predicted above where we found that the mass-luminosity
relation for low-mass stars is L ∝ G4 but is only L ∝ G for high-mass stars. In fact, it is
clear from the figure that the luminosity ratio tends to these values (i.e. λ4 and λ) in the
limiting cases M → 0 and M →∞.

5.6 Stars as Probes of Fundamental Physics

Although this course has been primarily concerned with testing alternate theories of gravity
we end by remarking that many other physical processes apart from gravity are involved in
determining the structure and evolution of stars. Take, for example, the electron scattering
opacity that appears in the formula for the luminosity of main-sequence stars (5.40). If we
calculate this from first principles we have

κes ∝
(

e2

mHc2

)2

. (5.45)

This means that any spatial or temporal variation in the speed of light, the mass of hydrogen
or the electron charge will show up in the luminosity of main-sequence stars, either as a
function of space or time.

As another example, consider the energy generation equation (5.7). In the standard
model, only neutrinos contribute energy losses in the form of ε̄. Neutrinos free-stream out
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of the star and the energy they carry with them is lost. This determines the life-time of the
main-sequence because the star needs to burn fuel at a slightly higher rate than it would
have to if there were no losses to stop itself collapsing. Now suppose we had a new particle
that is also produced and that also free streams out. This would be an extra source of energy
loss and would reduce the lifetime of the Sun. Since we know the Sun is 4.6 billion years
old we can’t add new particles that would reduce the main-sequence life-time below this.
One popular dark matter candidate is axions, which couple to photons. Photons deep in the
Sun’s core can convert into axions via the Primakoff process, which then free-stream out of
the Sun causing energy to be lost. The age of the Sun then lets us constrain the coupling of
the axion to photons.

Stars are finely balanced engines that utilise fundamental physics to convert hydrogen
into helium and beyond. They truly are natures laboratories!
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